Pat O'Sullivan

Mh4718 Week 12

Week 12

0.1 Fixed Point Iteration (contd.)

0.1.0.1 Solving Equations.

We can write any equation to be solved in the form $f(x)=x$ and to solve we check the criteria for convergence e.g. quadratics.

Example 0.1

Solve $x^{2}-5 x+6=0$ by fixed-point iteration.
First we write this equation as a fixed point equation. There are many ways that this can be done. The most obvious thing to do is simpy add x to both sides of the equation giving the equation:

$$
x^{2}-4 x+6=x
$$

We can attempt to solve the equation $x^{2}-5 x+6=0$ by finding a fixed point of $F(x)=x^{2}-4 x+6$ by iteration.
We can check whether we have guaranteed convergence or not for the iteration since we know that the solutions to $x^{2}-5 x+6=0$ are $x=2$ and $x=3$.

Note that $F^{\prime}(x)=2 x-4$ and $\left|F^{\prime}(2)\right|=0,\left|F^{\prime}(3)\right|=2$. According the above theory then we are guaranteed convergence to the fixed point 2 if we pick x_{0} "close enough" to 2 .

We can also write the equation $x^{2}-5 x+6=0$ as

- $x=\frac{x^{2}+6}{5}$
- $x=5-\frac{6}{x}$
- $x=\sqrt{5 x-6}$.

That is we can have

- $F(x)=\frac{x^{2}+6}{5}$
- $F(x)=5-\frac{6}{x}$
- $F(x)=\sqrt{5 x-6}$

Let us analyse the convergence behaviour when we iterate each of these respecively:

$$
F(x)=\frac{x^{2}+6}{5} \Rightarrow F^{\prime}(x)=\frac{2 x}{5} \Rightarrow\left|F^{\prime}(2)\right|=\frac{4}{5}(<1) \text { and }\left|F^{\prime}(3)\right|=\frac{6}{5}(>1) .
$$

Therefore we are guaranteed that iterating $\frac{x^{2}+6}{5}$ will converge to 2 if we pick x_{0} "close enough" to 2.

$$
F(x)=5-\frac{6}{x} \Rightarrow F^{\prime}(x)=\frac{6}{x^{2}} \Rightarrow\left|F^{\prime}(2)\right|=\frac{6}{4}(>1) \text { and }\left|F^{\prime}(3)\right|=\frac{6}{9}(<1) .
$$

Therefore we are guaranteed that iterating $5-\frac{6}{x}$ will converge to 3 if we pick x_{0} "close enough" to 3 .

$$
F(x)=\sqrt{5 x-6} \Rightarrow F^{\prime}(x)=\frac{\frac{5}{2}}{\sqrt{5 x-6}} \Rightarrow\left|F^{\prime}(2)\right|=\frac{\frac{5}{2}}{\sqrt{4}}=\frac{5}{4}(>1) \text { and }\left|F^{\prime}(3)\right|=\frac{\frac{5}{2}}{\sqrt{9}}=\frac{5}{6}(<1)
$$

Therefore we are guaranteed that iterating $\sqrt{5 x-6}$ will converge to 3 if we pick x_{0} "close enough" to 3 .

Recall that the Newton Raphson method iterates the function $F(x)=x-\frac{f(x)}{f^{\prime}(x)}$ in order to solve the equation $f(x)=0$ because

$$
F(p)=p \Rightarrow f(p)=0
$$

In order for this iteration to work we must have $f^{\prime}(x) \neq 0$ around p.
What about local convergence for the Newton Raphson method? To answer this question note that

$$
F^{\prime}(x)=1-\frac{\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}
$$

therefore $F^{\prime}(p)=0($ since $f(p)=0)$ and so F is locally convergent to each of its fixed points p.

0.1.1 Solving Linear equations.

There are iterative schemes for solving systems of linear equations.

Example 0.2

Solve the equations

$$
\begin{gathered}
3 x+y-z=3 \\
x-4 y+2 z=-1 \\
-2 x-y+5 z=2
\end{gathered}
$$

As we know such a set of equations can be written using matrix and vector notation.

Example 0.3

The equations

$$
\begin{gathered}
3 x+y-z=3 \\
x-4 y+2 z=-1 \\
-2 x-y+5 z=2
\end{gathered}
$$

can be written as:

$$
\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & -4 & 2 \\
-2 & -1 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

In general a system of n linear equations in n unknowns can thus be written as

$$
\mathbf{A} \mathbf{v}=\mathbf{b}
$$

where \mathbf{A} is an $n \times n$ matrix, \mathbf{v} is an n-dimensional vector and \mathbf{b} is an n dimentional vector.
Such a set of equations can also be written as a fixed point equation.

Example 0.4

The equations

$$
\begin{gathered}
3 x+y-z=3 \\
x-4 y+2 z=-1 \\
-2 x-y+5 z=2
\end{gathered}
$$

can be written as:

$$
\begin{aligned}
3 x & =-y+z+3 \\
-4 y & =-x-2 z-1 \\
5 z & =2 x+y+2
\end{aligned}
$$

That is

$$
\begin{aligned}
x & =-\frac{1}{3} y+\frac{1}{3} z+1 \\
y & =\frac{1}{4} x+\frac{1}{2} z+\frac{1}{4} \\
z & =\frac{2}{5} x+\frac{1}{5} y+\frac{2}{5}
\end{aligned}
$$

or in matrix notation

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\frac{1}{3} & \frac{1}{3} \\
\frac{1}{4} & 0 & \frac{1}{2} \\
\frac{2}{5} & \frac{1}{5} & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
1 \\
\frac{1}{4} \\
\frac{2}{5}
\end{array}\right)
$$

In general a system of n equations in n unknowns can be written as a fixed point equation of the form

$$
\mathbf{v}=\mathbf{T} \mathbf{v}+\mathbf{c}
$$

In many cases solutions to the fixed point version of the linear system can be estimated at by an iteration process.
One such process is known as Jacobi iteration.
If we wish to solve the system

$$
\mathbf{A} \mathbf{v}=\mathbf{b}
$$

where

$$
\mathbf{v}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)
$$

We solve the first line of the equations for x_{1} in terms of all the other variables, the second line for x_{2} in terms of all the other variables and so on and transform the system into a fixed point equation

$$
\mathbf{v}=\mathbf{T} \mathbf{v}+\mathbf{c}
$$

We then pick an initial guess

$$
\mathbf{v}^{(\mathbf{0})}=\left(\begin{array}{c}
x_{1}^{(0)} \\
x_{2}^{(0)} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}^{(0)}
\end{array}\right)
$$

and proceed to compute a sequence of vectors by iteration

$$
\mathbf{v}^{(\mathbf{n}+\mathbf{1})}=\mathbf{T v}^{(\mathbf{n})}+\mathbf{c}, n=0,1,2 \ldots
$$

If the original matrix \mathbf{A} is diagonally dominant, then this iteration will converge to a fixed point which supplies solutions to the system.

A matrix is diagonally dominant if each diagonal element has an absolute value which is greater than the sum of the absolute values of all the off-diagonal elements in the same row

It is easy to check that the system

$$
\begin{gathered}
3 x+y-z=3 \\
x-4 y+2 z=-1 \\
-2 x-y+5 z=2
\end{gathered}
$$

has solution $x=1, y=1, z=1$ and the matrix

$$
\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & -4 & 2 \\
-2 & -1 & 5
\end{array}\right)
$$

is diagonally dominant.

